A radiobiology lab wants to predict the diminishing radioactivity of a test amount of

`I`

, a radioisotope. The formula for N`N`_{t} = N_{0}(2^{-t/k)}

,where

`I`

, and NThe program assumes

2 STO 0

100 STO 1

50 STO 2

f A

Name | Description | |
---|---|---|

A | Loop over the days |

Name | Description | |
---|---|---|

0 | Day counter | |

1 | Initial amount of isotope | |

2 | Limit value for radioactivity |

Line | Display | Key Sequence | |
---|---|---|---|

000 | |||

001 | 42,21,11 | f LBL A | |

002 | 45 0 | RCL 0 | |

003 | 42 31 | f PSE | |

004 | 8 | 8 | |

005 | 10 | ÷ | |

006 | 16 | CHS | |

007 | 2 | 2 | |

008 | 34 | x↔y | |

009 | 14 | yˣ | |

010 | 45,20, 1 | RCL × 1 | |

011 | 42 31 | f PSE | |

012 | 45 2 | RCL 2 | |

013 | 43,30, 9 | g TEST x≥y | |

014 | 43 32 | g RTN | |

015 | 3 | 3 | |

016 | 44,40, 0 | STO + 0 | |

017 | 22 11 | GTO A |